





much more complicated objeet than an orthogonal
array.

BBy Theorem 2, this bound can be reached if
perfect lincar codes, with m-bit code words and
distance t+1, do exist. Perfect codes are quite rare
and hence we do not know whether the optimal

scheme is linear in the gencral case.
5. Tight Bounds for Extracting Two Bits

5.1 Preliminaries

Recall that by Lemma 4 (scction 3), any
Boolean function f(z) can be written as a sum
of the exclusive-or functions (that is the functions
ts(r) = @,eg zi for S C {1,2,...,n}). Further-
more, it was implicilly stated that expressing f as
a sum of the ¢g(z)’s can be done in a unique way.
We now show that when testing the resiliency of
a function it suffices to test the resilicncy of the
1g(z)’s with nonzero cocflicients in this expres-
sion. Clearly, a 9g(z) is t-resilient if and only if
|S| > t. This proves the i#f direction of the follow-
ing proposition.
Proposition: Let f : {0,1}" — {0,1} be a
non-trivial Boolean function, and let f(z)
> s cs¥s(z). The function f is t-resilient if and
only if thereisno § C {1,2,...,n} such that both
cs #0and |S]| < t.

Proof: For the only if direction, let Sy denote a
set S of minimum cardinality for which ¢g 7% 0,
and ng = |Sp|.- Assume, on the contrary, that
ng < t. Now, suppose that the adversary fixcs the
1€ Sp} (and
lets the rest be independent unbiased bits). Let

value 1 for all the variables in {z; :

Ag denote the set of all possible outcomes for the

n-bit string when the.adversary acts so; and let
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z be a random variable with uniform probability
distribution in Ag. LSquivalently, Pr(z; = 1) =1
il i€ Spand Pr(e; = 1)= § il i ¢ Sp. Let P(n)

denote the power set of {1,2,...n}.
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Thus there is a way to fix at most ¢ variables which

makes b biased. ||

5.2 The Bounds

Lemma 5: Let n = 3! be a multiple of 3. Let
bi(z) = BIL, =i, ba(z) = DL, zi and f(z) =
bi(z)ba(z). Then [ is (21 — 1)-resilient.

Proof Note that by and by satisly by Dby =
(EB:ZI zi) ) (@?l:m“ z‘-) . So if the adversary
is allowed to fix at most 2/ — 1 of the n bits, both
by, by and their exclusive-or are unbiased. By the
XOR-lemma (see section 3), by and by are two
independent random bits.}§

Similarly we get

Lemma 6 Let n = 3l + 2, by(z) @?2'11 z;,
by(z) = @¥H, 2. Then by(z)bg(z) is 20-

resilient.

On the other hand

Lemma 7: Let p € {0,1}. Then, there exists no
2l-resilient function f : {0,1}3+# — {0,1}2.



Proof: Assume, on the contrary, that [ is
2l-resilient, and interpret f as a function from
{1,=1}3 to {1,—1}2%. Let by(z) denote the first
bit of f(z), and bo(x) denote the second bit of f(z).
By the XOR-Lemma (section 3), both by and by as
well as by @by must be 2l-resilient. Thus using the
Proposition, for these three Boolean functions the
1g’s corresponding to nonzero coeflicients must
have |S| > 2{. We now show that this condition
cannot be met. Let

biz)= ),

cs¥s(z) and

SC{1,2,...,n}
bo(x)= ).  dryr().
TC{1,2,0m}

Then by (z) @ be(z) corresponds to
bi(z) ba(z)= Y,  csdrys(z)pr(e)

Sng{ll2""l"}

= )

S,TC{1,2,...,n}
(where SAT = SUUT — ST is the symmetric
differcnce). Recall that |S|,|T] > 2+ 1 for all
S,T where ¢g - dr 7 0. Thus, all non-zero
cocflicients of by - by correspond to subsets of car-
dinality < 28l +p—(20+1) <2+p-1) <
2. 1

Similarly,

csdrpsar(r)

Lemma 8: Let n = 3/ + 2. Then, there exists no
(2 + 1)-resilient function f : {0,1}™ — {0,1}%.
Combining the above four Lemmas, we get the
following result conjectured by Vazirani [10].

Theorem 4: There exist a t-resilient function f :
{0,1} — {0,1}2 if and only if ¢ < |2n/3).

6. On Extracting Few Bits when t > n/2
In this scction we show that k£ indcpendent un-

biased bits can be exiraéted if the adversary can

determine less than 251 . | 5% ] of the original
n > 2% — 1 bits. We also show that this is close
to the best possible performance as far as linear

extraction schemes arc concerned.

6.1 Possibility Result

Theorem 5: Let k < |logyn). Then there exist
a (|5 2k=1 — 1)-resilient scheme extracting &
bits out of n.

sketch of proof: Assume that [2,:"_1_[ = 1. For
1 <4 < klet J; C {1,2,...,,2% — 1} be

the subsct of integers j such that the i-th least

significant bit in the binary expansion of 5 cquals
1. Let bi(z122:-2n) = D,y 7. Let f(z) =
b1(z)ba(z)- -+ -bk(z). We will show that the function
f:{0,1}" > {0,1}* is (25! — 1)-resilient.

Note that each of the b;, as well as each ex-
clusive or of any non-empty subsct of the b;’s, is a
random variable depending on 25! of the z;’s.
(In particular, consider the sct S and the ran-
dom variable rs(z) = @, g bi(z). Then r5(z) =
EDjels z;, where Jg is the bit-by-bit exclusive or
of the k-bit strings which correspond to the binary
expansion of the integers in S. Note that |Jg| =
2%=1.) For gencral n, make | 52~ copies of the

above construction.jj

6.2 Impossibility Result
Theorem 6: Let k£ < llog, n). Then there exist

. k-1 .e .
no linear (;;"T__—l -n)-resilient extraction scheme for

extracting k bits.
sketch of proof Suppose that f : {0,1}" ~

{0,1}* is a lincar t-resilient function. Note the
correspondence between linear extraction schemes

and schemes in which cach extracted bit is the ex-



clusive or of some subset of the original bits. Con-
sider an 2% — 1 by n matrix M in which cach row
correspond to an exclusive or of a non-empty sub-
sct of the bits of f(z). By the fact f is t-resilient,
cach row must have at least {4+ 1 non-zcro entries.
On the other hand, cach column contains exactly
2k=1 ones if it corresponds to a variable which
appears in some extracted bit, and contains no
ones otherwise. Therefore, we have n - 25—1 >
(2=1)-(t+1)and t < 22,{—} -n. The Theorem
follows.

An alterrnative proof of Theorem 6 can be
derived by combining Plotkin Bound [8, ch. 2,
pp. 41-42] and our Theorem 2.

We conclude by suggesting the following

Conjecture: Let k < [logyn|. Then there exist
2k-l
251
for extracting k bits.

no general ( - n)-resilient extraction scheme

7. On Symmetric Predicates

A Boolean predicate f : {0,1}" — {0,1}
is called symmetric if for every permutation « :
{1,2,..,n}— {1,2,...,n},

f(xl’ T2yeeny xn) = f(xw(l)) Ty(2)s e+ z‘rr('n)) .
Let w(z) denote the Hamming weight of z. Then
for every symmetric predicate f there exists an
S C{1,2,...,n} such that

1 ifw(z)eS
fy={} e

0 otherwise
Thus, an unbiased symmetric predicate on n

Boolean variables correspond to an equal par-
tition of the m-th row in Pascal’s triangle (i.c.
the set S corresponding to the predicate satisfies
Yies(7) = Xigs (7). Fixing a variable in a
symmetric predicate, corresponds to sliding the

partition up one row to the right or left.
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We have obtained the following results:

1) The exclusive-or of all n variables and its
negation, are the only 2n/3-resilient sym-

metric predicates.

For sufliciently large n, the exclusive-or of
all n variables and its negation, arc the only
7n/100-resilient symmetric predicates.

An interesting open problem is to prove or dis-
prove the following Conjecture: The ezclusive-or
of all n variables and its negation, are the only

1-resilient symmetric predicates.

8. On k-wise Independence

In [7], Luby demonstrates how to convert a
randomized algorithm that uses pairwise indepen-
dent choices into a parallel deterministic algo-
rithm of the same depth. In this section, we con-
sider generalizations of his technique to the case of
k-wisc independent choices, and show that poly-
nomiality can be maintained only if k is a con-
stant. v
Convention: Let A be a set. We write a Er A to
abbreviate “a is picked at random with uniform
probability distribution in A”.

Suppose that in the original polynomial-time
algorithm, clements are picked randomly with
uniform distribution in a set E, and that the cor-
rectness of the algorithm is only based on the fact
that these choices are patrwise independent. As-
sume that |E| is polynomial in the size of the input
n. By change of parameters, we can assume that
the algorithm makes at most n random choices at
each round. Luby’s (cfficient) transformation is
based on the construction of a set of scquences S

which combines the following properties.



8 € § is a n-long scquence of elements in K.

A scquence s €g S defines a sequence of
pairwise independent random variables cach

uniformly distributed in E.

The sct S has a polynomially bounded car-
dinality.

Once such a set S is constructed, one may sub-
stitute the pairwise independent random choices
in the algorithm by the clements of a sequence
s €Er S.
domly s €g S onc can exhaust all possible s € S,

Furthermore, instcad of picking ran-

and run them all in parallel.

In (2], a simple construction that satlisfies the
above conditions was presented, and used in a
different context. This construction easily extends
to allow the n elements be k-wise independent?.
When k is a fixed constant, this construction is
E
k-wise independent clements were used in (7, 3, 1,
6].

A natural question is whether such techniques

and n. Similar constructions of

polynomial in

can be extended, while maintaining polynomiality
in |E| and n, to k’s which are not fixed. More
gencraly, how large should a set S C E™ be so
that the clements of a sequence 8 € S, are k-
wise independent random variables with uniform
probability distributed in E. »
Using the Uniform Projection Lemma of Sec-

tion 4, one can verify that such S must satisfy

2 Let |[E| = p be a prime power, and let a1, a3,...,an
be n distinct non-zero clements in the field GF(p). Con-
sider the sequence s;(z) = Z:=1 alz;modp (1 < i< n).
If the z;’s arc independent random variables (and each
z; €Eg E), then the s;(z)’s are k-wise independent variables
each uniformly distributed in E. Vinally note that the set
§ = {(s1(a), s2(a),.. ., a,.(a)l: a € GF(p)*} can be deter-
ministically constructed in p* - n - k GF(p)-operations.
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Thus, a deterministic simulation of a k(n)-wise
independent n-bit sequence cannot be done in

poly(n)-time, when limy, o k(n) = oo.

9. Open Problem
Prove or disprove the following claim: for
every n and t there exist a linear t-resilient func-

tion from {0,1}™ to {0, 1}B%t(nt),
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