


4. An Upper Bound on the Number of

Extractible Bits by a General Scheme

In this ~ection we dernon~tratc an upper bound

011 the Tlurnber of' independent unbiased bits (~X­

tractable by a general schcrne.

4.1 Preliminaries

Definition: Lct S ~ {a, l}n be a set of strings

and I = (it, i2 , ••• , it) be a rTlonolonc]y increasing

sequence of t integers rrOITl {I, 2, ... , n}. I~"or a E

{a, l}t, we denote

'The set S ~ {a, l}n has a uniform projcction onto

the i I-st, i 2-nd, ..., it-th coordinates if. for every

a E {a, l}t, ISI,al = W.
Let us show first show that sets having this

property for every t coordinates, nlust be of large

cardinality.

The Uniform Projection Lemma:

If S ~ {O, 1}n has uniform projection on any t

coordinates then 181 ~ E~!:o (7)·

sketch of proof. Let k = lSI. F'or convienience

change all 1 to -1 and 0 to 1. Now taking the

exclusive-or of two vectors corresponds to coor­

dinatewise multiplication. Let II be the k X n

matrix with the elements of S as rows.

Consider j arbitrary colunlns of II, when j ~

t. Let ]/' be the matrix consisting of the cor­

responding colurnns of 11. Since the rows of II

have uniform projection onto these coordinates,

aJJ possible j-tuples appear as rows of 1/' with the

sarne frequency. Thus, exactly half of the rows of

II' have an even nunlber of -1. It follows that

the exelusive-or of the eolurnnveetors of 11' has as

rnany 1'8 (18 -1 's.

Let l/ be the set of vcetors \vhich result by

taking the exc.lusive-or of i distinet co\ulnnvc(',tors

of II (i ~ l~J). 'rhe vectors in V arc distinct

and rnutually orthogonal when considered as real

vectors (since by the above paragraph the c.oor­

dinatewise rnultiplication of any pair of distinct

vectors in V has as rnany l's as -1 's). 1"'hcrefore,

~l' spans a subset of R k , and IVI ~ k follows.

Noting that IV I= Et!J() (7), the Lemma follows.

I

Ohserve that one can do slightly bettcr when t

is odd by considering also all colurnnvcctors which

arc xor's of t; J arbitrary vectors and the first

columnvcctor.

In coding theory, the rnatrix II is called an

orthogonal array of strength t. It is likely that

the above Lernrna has already been proven.

4.2 The Upper bound

Theorem 3: Bit(n, t) ~ n - Jog E~!:o (;).
sketch of proof. Let f : {O,l}n H {O,I}m

be a t-resilient function. One can easily verify

that /-1(0, 0... ,0) is a set which has a uniform

projection onto any t coordinates. Apply­

ing the Uniform Projection Lemma, we get

If-I (0,0, , 0)1 ~ E~!:o (7). On the other hand

11-1(0, 0 ,0)1 = 2n - m , and the theorem follows.

I

The proof of Theorem 3 makes usc of the fact

that a t-resilient function 1 : {O,l}n H {O,l}m

yields an orthogonal arrays of strength t. In fact,

1 yields 2m such arr~ys whose ro\vs fill the entire

n-dirnentional space. Thus, such a function is a
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rnuch rnare eornplicaLed objeet than all orthogonal

array.

Jly rrheOrelTl 2, this bound ean be rcaehed if

perfect linear codes, with n-bit code vvords and

disLanec t+ 1, do exist. llerrcct codes are quite rare

and hence we do not know whether the optirnal

SehCITlC is linear in the general case.

5. Tight Bounds for Extracting Two Bits

5.1 Preliminaries

llecall that by 1.J<~lnrna 4 (section :~), any

l300lcan function f(x) can be written as a sUln

or the exclusive-or funetioTls (that is the functions

~;'s(x) = $iESXi for S ~ {1,2, ... ,n}). F'urther­

Inore, it was irnplicitly stated that expressing f as

a sum of the 'l/Js(x)'s can be done in a unique way.

We now show that when testing the resiliency of

a function it suffices to test the resiliency of the

'l/Js(x)'s with nonzero coeflicicnts in this expres­

sion. C;lcarly, a 'l/Js(x) is t-resilient if and only if

151 > t. This proves the if direction of the follow­

ing proposition.

Proposition: Let f : {O, l}n ~ {O,l} be a

non-trivial Boolean function, and let j(x) =
L:s cs1/Js(x). The function J is t-resilient if and

only if there is no S ~ {I, 2, ..., n} such that both

Cs :f 0 and lSI ~ t.

Proof: For the only if direction, let So denote a

set S of minimurn cardinality for which Cs :f 0,

and no = ISol. Assume, on the contrary, that

no ~ t. Novv, suppose that the adversary fixes the

value 1 for all the variables in {x~ : i E So} (and

lets the rest be independent unbiased bits). Let

Ao denote the set of all possible outcomes for the

'fl,-bit string when the ,adversary acts so; and let
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x be a randorn variable with uniforrn probability

distribution in Ao. l~quivaleI1tly, j)r(xi = 1) == 1

if i E SlO and fJr(Xi == I) == ~ if i r£. 5'0' lJet J)(n)

denote the power set or {I, 2, .. .n}.

E(J(x)) = L 2-(n-'!'o). 1(0:)
oEAo

= L 2-(n-no). L cs1/Js(o:)
oEAo SEP(n)

L 2-(n-no). L Cs 1/Js (0:)
SEP(n)-{So} oEAo

+ 2-(n-no!). L cso1/Jso(O:)
oEAo

L Cs • E(1/Js(x))
SEP(n)-{So}

+ CSo • JE( '$50 (x))

= 0 + CSo

:f O.

Thus there is a way to fix at lllost t variables which

makes b biased. I

5.2 The Bounds

Lemma 5: Let n = 31 be a rllultiple of 3. IJet

b1(x) = $;~1 Xi, b2{x); $:~l+l Xi and j(x) =

b1(x)b2(x). Then f is (21- l)-resilient.

Proof Note that bl al1d b2 satisfy bl $ b2 ­

($~=1 Xi) ffi ($::'21+1 Xi)' So if the adversary

is allowed to fix at most 21 - 1 of the n bits, both

bi , b2 and their exclusive-or are unbiased. By the

XOR-Iemrna (see section 3), bl and b2 are two

independent random bits.1

Sirnilarly we get

Lemma 6 Let n = 31 + 2, b1(x) = ~~~11 Xi,

b2(x) = ffi~~~2 Xi· Then b1(x)b2(x) is 21­

resilient.

On the other hand

Lemm~ 7: Let Jl E {O, ~}. Then, there exists no

21-resilient function! : {O, 1}3l+J.L ~ {O, 1}2.



Proof: Asslllne, on the eontrary, that f h~

2l-resilient, and interpret J as a rUI}(~tion f'rorn

{I, -1 } al to {1, -1 } 2 • I./eL hi (x) denote the Ii rsi

bit of j(x), and b2(x) denote the seeond bit of f(x).

By the XOll-tJemTna (seet,joll 3), both b1 and b2 as

well as b1E!:)b2 nlust be 21-rcsilicnt. Thus using the

Proposition, for these three J]oolean functions the

'l/Js 's corresponding to non zero eoemeients nllJst

have 181 > 21. Wc now show that this condition

cannot be met. Let

b,(x) = I: cs'l/ls(x) and
S~{1,2,... ,n}

b2(x) = I: dT'I/lT(X) ·
T~{1,2, ... ,n}

Then b1(x) E!:) b2(x) corresponds to

bt (x) · b2(x) = I: cSdT'I/lS(X)'I/lT(X)
S,T~ {1,2, ... ,n}

I: cSdT'I/lSAT(X)
S,T~{1,2, .•• ,n}

(where S~T = 8 UT - S nTis the symmetric

difference). lleeall that 181,ITI 2:: 21 + 1 for all

S, T where Cs · dT =f o. l'hus, all non-zero

coefficients of b1 • b2 correspond to subsets of car­

dinality ::; 2(:il + JL - (21 + 1)) :::; 2(1 + IL - 1) ~

2l. I

Similarly,

Lemma 8: Let n = 31 + 2. Then, there exists no

(2l + I)-resilient function J : {O, l}n .-+ {O, 1}2.

Combining the above four LemInas, we get the

following result conjectured by Vazirani [10].

Theorem 4: There exist a t-resilient function f :

{O, l}n H {O, 1}2 if and only if t < l2n/3J.

6. On Extracting Few Bits when t > n/2

In this section we show that k independent 'un­

biased bits can be extracted if the adversary can

detcrrnine less than 2k- 1 • l2k~ 1J or the original

n ~ 2k
- 1 bits. We also show that this is close

to the best possible perf'orInance as far as linear

extraction schcInes arc concerned.

6.1 Possibility Result

Theorem 5: I.lct k ~ 1l0g2 nJ. Then there exist

a (l2k~1 J·2k
-

1
- 1)-rcsilient schernc extracting k

bits out of n.

sketch of proof. ASSUITle that l2k~1J = 1. For

1 ~ i ~ k, let Ji ~ {1,2, ...,2k
- I} be

the Stl bset of integers j such that the i-th least

significant bit in the binary expansion of j equals

1. Let bi (Xt X2·· ·xn ) = €BiEJi Xi. I..Ict j(x) =
b](x)b2(x)·· ·bk(x). We will show that the function

f : {O, l}n t-+ {O, J}k is (2 k - 1 - 1)-resiJient.

Note that each of the bi, as well as each ex­

clusive or of any non-empty subset of the bi'S, is a

randonl variable depending on 2k - 1 of the Xi'S.

(In particular, consider the set S and the ran­

dom variable rs(x) = €BiES bi{x). Then rs(x) =
E9iEJs Xi' where Js is the bit-by-bit exclusive or

of the k-bit strings which correspond to the binary

expansion of the integers in S. Note that IJsl =
2k - 1.) For general n, make l21c~lJ copies of the

above construction.1

6.2 Impossibility Result

Theorem 6: Let k ~ llog2nJ. Then there exist

no linear (::=~ ·n)-resilicnt extraction scheme for

extracting k bits.

sketch 0/ proof. Suppose that f : {O, I}" t-+

{O, l}k is a linear t-rcsi1ient function. Note the

correspondence bctw('~Ii linear extraction schemes

and schemes in which each extracted bit is the ex-
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cl llsive or of' SOIne su bsctof the origi nal bits. (;011­

sider an 2k
- 1 by n rnatrixM in whieh eaeh row

corr('~pofld to an ('xclusive or of a non-crnpty sub­

set of' the bit.s of J( x). IJy the ract. J is t-resilient,

ea(~h TO\\' rnust have at least t + 1 non.;.zero entrics.

()n the other hand, each colurnn contains exactly

2k
- 1 ones if it corresponds to a variable which

appears in sorne extracted bit, and contains no

ones otherwise. 'J'hcrefore, we have n · 2k - 1 ~

(2 k
- 1)· (t + 1) and t < ::=~ ·n. The Theorem

follows·1

An alterrnativc proof of 'fheorenl 6 can be

derived by cornbining }>lotkin lJound [8, ch. 2,

pp. 41-42] and our Thcorcrn 2.

We conclude by suggesting the following

Conjecture: [,et k ~ llog2 nJ. Then thcre exist

no general (::=~ ·n)-resilient extraction scheme

for extracting k bits.

7. On Symmetric Predicates

A l300lean predicate f : {O,l}n H {O,l}

is called symmetric if for every pcrrnutation 1r :

{1,2, ...,n}~ {1,2, ...,n},

!(Xl, X2, •• ., x n ) = f(X 1r(l)' X1r(2), • • ., X1r(n») ·

Let w(x) denote the Ilarnming weight of x. Then

for every symmetric predicate f there exists an

S ~ {I, 2, ..., n} such that

f(x) _{I if w(x) ES
o otherwise

Thus, an unbiased symmetric predicate on n

Boolean variables correspond to an equal par­

tition of the n-th row in Pascal's triangle (Le.

the set S corresponding to the predicate satisfies

EiES (7) = Ei{tS (~)). Fixing a variable in a

sYlJlmetric predicate, corresponds to sliding the

partition up one row to the right or left.
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We have obtained the following results:

1) The exclusive-or of all r~ variables and its

negation, are the only 2n/3-resilient sym­

TIletrie predicates.

2) l~'or suni(~icntly large n, the exclusive-or of

all n, variables and its negation, are the only

7nj1OO-resilient syrnrnetric predicates.

An interesting open probleln is to prove or dis­

prove the following (;opjccture: The exclusive-or

of all 1t variables and its negation, aTe the only

1-resilient symmetric predicates.

8. On k-wise Indepe~denee

In [7], I.Ju by dcrJlonstrates how to convert a

randornizcd algorithrn that uses pairwise indepen­

dent choices into a parallel deterministic algo­

rithrn of the sarne depth. In this section, we con­

sider generalizations of' his technique to the case of

k-wisc independent choices, and show that poly­

nomiality can be maintained only if k is a con­

stant.

Convention: I.Jct A be a set. We write a En A to

abbreviate "a is picked at random with uniform

probability distribution:in A".

Suppose that in the original polynomial-time

algorithm, clements are picked randomly with

uniform distribution in a set E, and that the cor­

rectness of the algorithm is only based on the fact

that these choices are pairwise independent. As­

sume that lEI is polynolnial in the size of the input

n. By chan-ge of parameters, we can assume that

the algorithmlnakes at most n random choices at

each round. Luby's (efficient) transformation is

based, on the construction of a set of sequences S

which cOlllbincs the following properties.



0) 8 E S' is a rt-)ong seqller)(~e of' elernents in l~.

1) A sequenee H En i.e.; defines a sequence of

pairwise independent randorn variables caeh

unifornlly distributed in E.

2) l"he sct S has a polynolnially bounded car­

dinality.

Once such a sct S is constructed, one may sub­

stitute the pairwise independent randorn choices

in the algorithm by the e]clnents of a sequence

s En S. li'urtherlnore, instead of picking ran­

dOlnly .'; En S one can exhaust all possible 8 E S,

and ru n theITl all in parallel.

In [2], a simple construction that satisfies the

above eonditions was presented, and used in a

different context. 1"his construction easily extends

to allow the 11, clements be k-wisc indcpcndent~.

When k is a fixed constant, this construction is

polynonlial in lEI and n. Sirnilar constructions of

k-wisc independent elCInents were used in [7, 3, 1,

6].

A natural question is whether such techniques

can be extended, while nlaintaining polynomiaJity

in lEI and n, to k's which are not fixed. More

generaly, how large should a set S ~ En be so

that the elements of a sequence 8 ER S,are k­

wise independent random variables with uniform

probability distributed in E.

Using the Uniform Projecti.on Lemma, of Sec­

tion 4, one can verify that such S must satisfy

2 I.let !E~ = p be a prime power, and letal,QZ, ..., an
be n dIstInct non- zero clclncnts in the ficld GF(p). Con-

sider the sequence 8i(X) = "'~_ a~x· modp (1 < i < n).LJ,-l , , - -
If the Xi '8 arc independent 'randolnvariablcs (and each
ziER E), then the Si(X)'S are k-wise independcnt variables
each uuiforIuly 'distributed in E. Finally note that the set
S . . {(S) (al! S2(a), ... , Sn(a)l: aE GF(p)k} can be deter­
IDllllstically constructed· in p · n · k GF(p)-operations'.'
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'rhus, a deterrninistie siInulaiion of a k(n)-wise

independent n-bit scquenee cannot he done in

poly(n)- tiTTle, when lirnn --+ oo k( r~) = 00.

9. Open Problem

})rove or disprove the following clailn: for

every nand t there exist a linear t-resilient func­

tion from {a, l} n to {a, 1}Bit(n,t).
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